Ref No:

COURSE PLAN

Academic Year 2019 – 20

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315 Web:www.skit.org.in E-mail:skit1princi@gmail.com/principal@skit.org.in

Program:	B E – MECHANICAL
Semester :	V
Course Code:	17ME52
Course Title:	Dynamics of Machines
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	Dr. K.M. Kenchi Reddy

Academic Evaluation and Monitoring Cell

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA

Checked by

Phone / Fax :+91 80 23721477 -STD- 080 23721315 Web:www.skit.org.in E-mail:skit1princi@gmail.com/principal@skit.org.in

Table of Contents

17ME52 : DYNAMICS OF MACHINERY	
A. COURSE INFORMATION	
1. Course Overview	4
2. Course Content	4
3. Course Material	5
4. Course Prerequisites	5
B. OBE PARAMETERS	
1. Course Outcomes	5
2. Course Applications	6
3. Articulation Matrix	7
4. Mapping Justification	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

17ME52 : DYNAMICS OF MACHINERY

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Year / Semester :	03/V	Academic Year:	2019
Course Title:	Dynamics of Machines	Course Code:	17ME52
Credit / L-T-P:	04/03-02-0	SEE Duration:	180 Min
Total Contact Hours:	50	SEE Marks:	80Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	Dr.K.M.Kenchi Reddy/	Sign	Dt:
Checked By:	Harendra Kumar S	Sign	Dt:

2. Course Content

Modu	Module Content	Teaching	Module	Blooms
le		Hours	Concepts	Level
	Static force Analysis: Static equilibrium. Equilibrium of two and three force members.Members with two forces and torque, Free body diagrams, Static force analysis of four bar mechanism and Slider-crank mechanism with and without friction. Dynamic force Analysis: D'Alembert's principle, Inertia force, Inertia torque. Dynamic forceanalysis of four-bar mechanism and Slider crank mechanism without friction, numerical problems		Force and Torque	L3 Apply
2	Balancing of Rotating Masses: Static and dynamic balancing, balancing of single rotating mass by balancing masses in same plane and in different planes. Balancing of several rotating masses by balancing masses in same plane and in different planes. Balancing of Reciprocating Masses: Inertia effect of crank and connecting rod, Single cylinderengine, balancing in multi cylinder-inline engine (primary and secondary forces), numerical problems.		Balancing	L3 Apply L4 Analyze
3	Governors: Types of governors, force analysis of Porter and Hartnell governors. Stability, Sensitiveness, Isochronism, Effort and Power. Gyroscope: Vectorial representation of Gyroscopic couple. Effect of gyroscopiccouple on plane disc, aeroplane, forcStatic force Analysis:tatic force Analysis: ship, stability of two wheelers and four wheelers. Numerical problems.		Speed, Direction	L3 Apply L4 Analyze
4	Introduction &Undamped free Vibrations (Single Degree of Freedom) Types of vibrations, Definitions, Simple Harmonic Motion (SHM), Work done by harmonic force, Principle of super position applied to SHM.Dynamic force Analysis Methods of analysis –(Newton's, Energy &Rayleigh's methods). Dynamic force Analysis Derivations for spring mass systems, Natural frequencies of simple systems, Springs in series and parallel, Torsional and transverse vibrations, Effect of mass of spring and problems.		Time period and Frequency	L3 Apply L4 Analyze
5	Damped free Vibrations (Single Degree of Freedom) Types of damping, Analysis with viscous damping - Derivations for over,	10	Damping	L3 Apply

(Copyright	t ©2017. cAAS. All rights reserved.		
		critical and under damped systems. Forced Vibrations (Single Degree of		
		Freed Dynamic force Analysisom):		
		Analysis of forced vibration with constant harmonic excitation,		
		Magnification factor (M.F.), Vibration isolation - Transmissibility ratio,		
		Excitation of support Static force Analysis:(absolute and relative)		
		Logarithmic decrement and numerical problems.		

3. Course Material

Modu	Details	Available
le		
1	Text books	
	1. Theory of Machines, Sadhu Singh, Pearson Education, 2nd Edition. 2007	In Lib
	2. Mechanism and Machine Theory, A. G. Ambekar PHI, 2007	
	3. Mechanical Vibrations, V. P. Singh, Dhanpat Rai and Company,	
	4. Mechanical Vibrations, G. K. Grover, Nem Chand and Bros.	
2	Reference books	
	1. Theory of Machines, Rattan S.S. Tata McGraw Hill Publishing Company Ltd.,	In dept
	New Delhi, 3 rd Edition, 2009.	
	2. Mechanical Vibrations, S. S. Rao, Pearson Education Inc, 4 edition, 2003.	
3	Others (Web, Video, Simulation, Notes etc.)	Available
	https://www.youtube.com/watch?v=tdkFc88Fw-M	
	https://www.youtube.com/watch?v=YoZgk1xlIW4-	
	https://www.youtube.com/watch?v=AchBiFAEeLo	
	https://www.youtube.com/watch?v=YoZgk1xlIW	
	• https://www.youtube.com/watch?v=tdkFc88Fw-M	

4. Course Prerequisites

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	15ME42	Kinematics o	Mechanism of 4 bar chain ,single	4		L3
		Machines	slider crank chain			Apply
				-		

Note: If prerequisites are not Static force Analysis:taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#		Teach.	Concept	Instr	Assessment	Blooms'
		Hours		Method	Method	Level
CO1	To gain the knowledge of static and	5	Force and	Chalk and	Assignment	L3
	dynamic equilibrium conditions of mechanisms		Torque	board	and slip test	Apply,
CO2	Analyse the mechanism subjected to forces	5	Balancing	Chalk and	Assignment	L3,L4
	and couples with and without friction		-	board	and slip test	Apply,
						Analyze
CO3	To understand the balancing principles of	5	Balancing	Chalk and	Assignment	L3,L4
	rotating masses			board	and slip test	Apply,
						Analyze
CO4	To understand the balancing principles of	5	Speed	Chalk and	Assignment	L3,L4
	reciprocating masses			board	and slip test	Apply,
						Analyze
C05	Abel to know to regulate the speed of the	5	Direction	Chalk and	Assignment	L3,L4

S. All rights reserved.					
gine			board	and slip test	Apply,
					Analyze
understand the stability of two wheeler	5	Vibration	Chalk and	Assignment	L3,L4
d four wheelers			board	and slip test	Apply,
				-	Analyze
o understand the different types of	5	Time period	Chalk and	Assignment	L3,L4
bration and simple harmonic motion		and	board	and slip test	Apply,
-		Frequency		-	Analyze
understand the vibration characteristics	5	Single degrees	Chalk and	Assignment	L3,L4
single degree of freedom systems		of freedom	board	and slip test	Apply,
				-	Analyze
understand the characterise the single	5	forced	Chalk and	Assignment	L3
gree freedom system subjected to free		vibration	board	and slip test	Apply
d forced vibration with and with out				1	
mping					
understand the forced vibration with	5	forced	Chalk and	Assignment	L3
nstant harmonic excitation and		vibration	board	0	Apply
garithmic decrement.				1	
	understand the stability of two wheeler d four wheelers understand the different types of oration and simple harmonic motion understand the vibration characteristics single degree of freedom systems understand the characterise the single gree freedom system subjected to free d forced vibration with and with out mping understand the forced vibration with nstant harmonic excitation and	gine understand the stability of two wheeler 5 understand the different types of oration and simple harmonic motion 5 understand the vibration characteristics single degree of freedom systems 5 understand the characterise the single gree freedom system subjected to free d forced vibration with and with out mping 5 understand the forced vibration and 5	gine5Vibrationunderstand the stability of two wheeler d four wheelers5Vibrationunderstand the different types of oration and simple harmonic motion5Time period and Frequencyunderstand the vibration characteristics single degree of freedom systems5Single degrees of freedomunderstand the characterise the single gree freedom system subjected to free d forced vibration with and with out mping5forced vibrationunderstand the forced vibration with nstant harmonic excitation and5forced vibration	gineboardunderstand the stability of two wheeler5VibrationChalk and boardunderstand the different types of oration and simple harmonic motion5Time period and FrequencyChalk and boardunderstand the vibration characteristics single degree of freedom systems5Single degrees of freedomChalk and boardunderstand the characterise the single gree freedom system subjected to free d forced vibration with and with out mping5forced vibrationChalk and boardunderstand the forced vibration with nstant harmonic excitation and5forced vibrationChalk and board	gineboardand slip testunderstand the stability of two wheeler5VibrationChalk and boardAssignment and slip testunderstand the different types of oration and simple harmonic motion5Time period and FrequencyChalk and boardAssignment and slip testunderstand the vibration characteristics single degree of freedom systems5Single degrees of freedomChalk and boardAssignment and slip testunderstand the characterise the single gree freedom system subjected to free d forced vibration with and with out mping5forced vibrationChalk and boardAssignment and slip testunderstand the forced vibration with nstant harmonic excitation and5forced vibrationChalk and boardAssignment and slip test

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

1 Four-bar linkages can be used for many mechanical purposes, including to: convert rotational motion to reciprocating motion CO1 L3, motion to reciprocating motion 2 The balancing of rotating bodies is important to avoid vibration. In heavy industrial machines such as gas turbines and electric generators, vibration can cause catastrophic failure, as well as noise and discomfort. CO2 L3,14 3 In order to simplify the motion of a crank/slider mechanism, the connecting rod/piston assembly is generally divided into two mass groups, a reciprocating mass, and a rotating mass. The bigend of the rod is generally said to be rotating while the small end is said to be reciprocating. CO3 L3,14 4 Five cylinder engines. Inline five cylinder (L5) engine, with crank throws at 72° phase shift to each other, is the common five cylinder configuration. CO4 L3,14 6 Gyroscopes are used in the field of automobile engineering. CO5 L13,14 7 The gyroscopic effect can be best explained by the principle of behavior of a gyroscope. According to the eBalancing in multi cylinder-inline engine (primary and secondary forces), numerical problems.quation that describes gyroscope behavior, the torque on the gyroscope applied perpendicular to its axis of rotation and also perpendicular to its angular momentum causes it to rotate about an axis perpendicular to both the torque and the angular momentum. This rotational motion is referred to as precession. CO8 L3,14 8 Applications in bridges, buildings, mechanical engineering and aerospace .	SNo		CO	Level
Industrial machines such as gas turbines and electric generators, vibration can cause catastrophic failure, as well as noise and discomfort.CO3L3,143In order to simplify the motion of a crank/slider mechanism, the connecting rod/piston assembly is generally divided into two mass groups, a reciprocating mass, and a rotating mass. The big- end of the rod is generally said to be rotating while the small end is said to be reciprocating.CO3L3,144Five cylinder engines. Inline five cylinder (L5) engine, with crank throws at 72° phase shift to each other, is the common five cylinder configuration.CO4L3,145Governors are used in the field of automobile engineering.CO5L13,146Gyroscopes are used in the field of aeronautics and ships.CO6L3,147The gyroscopic effect can be best explained by the principle of behavior of a gyroscope. According to the eBalancing of Reciprocating Masses: Inertia effect of crank and connecting rod, Single cylinderengine, balancing in multi cylinder-inline engine (primary and secondary forces), numerical problems.quation that describes gyroscope behavior, the torque on the gyroscope applied perpendicular to its axis of rotation and also perpendicular to its angular momentum causes it to rotate about an axis perpendicular to both the torque and the angular momentum. This rotational motion is referred to as precession.CO8L3,14	1	Four-bar linkages can be used for many mechanical purposes, including to: convert rotational motion to reciprocating motion	COI	,
3 In order to simplify the motion of a crank/slider mechanism, the connecting rod/piston assembly is generally divided into two mass groups, a reciprocating mass, and a rotating mass. The bigend of the rod is generally said to be rotating while the small end is said to be reciprocating. CO3 L3,14 4 Five cylinder engines. Inline five cylinder (L5) engine, with crank throws at 72° phase shift to each other, is the common five cylinder configuration. CO4 L3,14 5 Governors are used in the field of automobile engineering. CO5 L13,14 6 Gyroscopes are used in the field of aeronautics and ships. CO6 L3,14 7 The gyroscopic effect can be best explained by the principle of behavior of a gyroscope. According to the eBalancing of Reciprocating Masses: Inertia effect of crank and connecting rod, Single cylinderengine, balancing in multi cylinder-inline engine (primary and secondary forces), numerical problems.quation that describes gyroscope behavior, the torque on the gyroscope applied perpendicular to its axis of rotation and also perpendicular to its angular momentum causes it to rotate about an axis perpendicular to both the torque and the angular momentum. This rotational motion is referred to as precession. CO8 L3,14 8 Applications in bridges, buildings, mechanical engineering and aerospace CO8 L3,14	2	industrial machines such as gas turbines and electric generators, vibration can	CO2	L3,14
Phase shift to each other, is the common five cylinder configuration.CO5L13,145Governors are used in the field of automobile engineering.CO5L13,146Gyroscopes are used in the field of aeronautics and ships.CO6L3,147The gyroscopic effect can be best explained by the principle of behavior of a gyroscope. According to the eBalancing of Reciprocating Masses: Inertia effect of crank and connecting rod, Single cylinderengine, balancing in multi cylinder-inline engine (primary and secondary forces), numerical problems.quation that describes gyroscope behavior, the torque on the gyroscope applied perpendicular to its axis of rotation and also perpendicular to its angular momentum causes it to rotate about an axis perpendicular to both the torque and the angular momentum. This rotational motion is referred to as precession.CO8L3,14	3	In order to simplify the motion of a crank/slider mechanism, the connecting rod/piston assembly is generally divided into two mass groups, a reciprocating mass, and a rotating mass. The big-	CO3	L3,14
6Gyroscopes are used in the field of aeronautics and ships.CO6L3,147The gyroscopic effect can be best explained by the principle of behavior of a gyroscope. According to the eBalancing of Reciprocating Masses: Inertia effect of crank and connecting rod, Single cylinderengine, balancing in multi cylinder-inline engine (primary and secondary forces), numerical problems.quation that describes gyroscope behavior, the torque on the gyroscope applied perpendicular to its axis of rotation and also perpendicular to its angular momentum causes it to rotate about an axis perpendicular to both the torque and the angular momentum. This rotational motion is referred to as precession.CO8L3,14	4		CO4	L3,14
 7 The gyroscopic effect can be best explained by the principle of behavior of a gyroscope. According to the eBalancing of Reciprocating Masses: Inertia effect of crank and connecting rod, Single cylinderengine, balancing in multi cylinder-inline engine (primary and secondary forces), numerical problems.quation that describes gyroscope behavior, the torque on the gyroscope applied perpendicular to its axis of rotation and also perpendicular to its angular momentum causes it to rotate about an axis perpendicular to both the torque and the angular momentum. This rotational motion is referred to as precession. 8 Applications in bridges, buildings, mechanical engineering and aerospace 	5	Governors are used in the field of automobile engineering.	CO5	L13,14
 gyroscope. According to the eBalancing of Reciprocating Masses: Inertia effect of crank and connecting rod, Single cylinderengine, balancing in multi cylinder-inline engine (primary and secondary forces), numerical problems.quation that describes gyroscope behavior, the torque on the gyroscope applied perpendicular to its axis of rotation and also perpendicular to its angular momentum causes it to rotate about an axis perpendicular to both the torque and the angular momentum. This rotational motion is referred to as precession. 8 Applications in bridges, buildings, mechanical engineering and aerospace 	6	Gyroscopes are used in the field of aeronautics and ships.	CO6	L3,14
	7	gyroscope. According to the eBalancing of Reciprocating Masses: Inertia effect of crank and connecting rod, Single cylinderengine, balancing in multi cylinder-inline engine (primary and secondary forces), numerical problems quation that describes gyroscope behavior, the torque on the gyroscope applied perpendicular to its axis of rotation and also perpendicular to its angular momentum causes it to rotate about an axis perpendicular to both the torque and the angular momentum. This rotational	CO7	L3,14
9Applications in bridges, buildings, mechanical engineering and aerospaceCO9L3	8	Applications in bridges, buildings, mechanical engineering and aerospace	CO8	L3,14
	9	Applications in bridges, buildings, mechanical engineering and aerospace	CO9	L3

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes	Program Outcomes							
#	COs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1]	Level						

Copyright ©2017. CAAS											0	1	2	l
17ME52.1	To gain the knowledge of static and										U	1	4	L1
1/101232.1	dynamic equilibrium conditions of	v	N	-	-	-	-	-	_	-	-	-	-	LI
	mechanisms													
17ME52.2	Analyse the mechanism subjected													L2
1/ME32.2			N	-	-	-	-	-	_	-	-	-	-	LZ
	to forces and couples with and without friction													
17ME52.3														L1
1/ME52.5	8	V	N	-	-	-	-	-	_	-	-	-	-	LI
171 (552.4	principles of rotating masses		.1											1.0
17ME52.4	To understand the balancing		N	-	-	-	-	-	-	-	-	-	-	L2
151 (55.5.5	principles of reciprocating masses													.
17ME52.5	Abel to know to regulate the speed		V	-	-	-	-	-	_	-	-	-	-	L1
	of the engine		,											
17ME52.6	To understand the stability of two			-	-	-	-	-	_	-	-	-	-	L2
	wheeler and four wheelers													
17ME52.7	To understand the different types of			-	-	-	-	-	-	-	-	-	-	L1
	vibration and simple harmonic													
	motion													
17ME52.8	To understand the vibration			-	-	-	-	-	-	-	-	-	-	L2
	characteristics of single degree of													
	freedom systems													
17ME52.9	To understand the characterise the			-	-	-	-	-	_	-	-	-	-	L1
	single degree freedom system													
	subjected to free and forced													
	vibration with and with out damping													
17ME52.10	To understand the forced vibration			-	-	-	-	-	_	-	-	-	-	L2
	with constant harmonic excitation													
	and logarithmic decrement.													
Note: Mention	n the mapping strength as 1, 2, or 3													

4. Mapping Justification

Map	ping	Justification	Mapping Level
СО	РО	-	-
CO1	PO1	Knowledge of force and torque is required in machines and mechanism	L2
CO1	PO2	Analyzing problems in machine tools and automobiles	L3
		Analyzing problems in machine tools and automobiles	L3

Note: Write justification for each CO-PO mapping.

Map	ping	Justification	Mapping Level
СО	PO	•	-
CO2	PO1	Knowledge of force and torque is required in machines and mechanism	L2
CO2	PO2	Analyzing problems in machine tools and automobiles	L3
CO3	PO1	Knowledge of balancing of mass is required in machine tools and engines to reduce vibration	L2
CO3	PO2	Analysing problems in balancing of rotating masses is used to reduce the vibration	L3

Map	ping	Justification	Mapping Level
СО	РО	•	-
17ME52			

CO4	All rights reserved. PO1	Knowledge of balancing of mass is required in machine tools and engines to	L2
04	roi	reduce vibration	LZ
CO4	PO2	Analysing problems in balancing of reciprocating masses is used to reduce the vibration	L3
CO5	PO1	Knowledge of governors is required to regulate the speed of an engine	L2
CO5	PO2	Analysing the problems in four wheelers	L3
CO6	PO1	Knowledge of gyroscope is required to stabilize the engine speed	L2
CO6	PO2	Analysing the problems in four wheelers	L3
CO7	PO1	Knowledge of vibrations is required to know the natural frequency and resonance to the system	L2
CO7	PO2	Analysing problem in vibration is required to calculate the frequency of spring mass system.	L3
		· · · · ·	
CO8	PO1	Knowledge of vibrations is required to know the natural frequency and resonance to the system	L2
CO8	PO2	Analyzing problems in damped and forced vibration is required to know magnification factor and transmissibility ratio	L3
CO9	PO1	Knowledge of damped vibration is used to reduce the loss of energy in system	L2
CO9	PO2	Analyzing the problems of damped vibration is required to know the system whether it is under or critical damped	L3
CO	РО	-	-
CO10	PO1	Knowledge of damped vibration is used to reduce the loss of energy in system	L2
CO10	PO2		

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
17ME52					
Prepared by		Checked by		Approved	

	52017. ern ib. rin ngins reserved.	 n	n	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Teaching		No. c	of quest	ion in H	Exam		CO	Levels
ule #		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Static force Analysis and Dynamic force	10	2	-	-	1	1	2	CO1,	L3, L3
	Analysis								CO2	
2	Balancing of rotating and reciprocating	10	2	-	-	1	1	2	CO3,	L3, L4
	masses								CO4	
3	Governors and Gyroscopes	10	-	2	-	1	1	2	CO5,	L3, L4
									CO6	
4	Introduction and undamped free	10	-	2	-	1	1	2	CO7,	L3, L4
	vibration								C08	
5	Damped free and forced vibration	10	-	-	4	1	1	2	CO9,	L3, L4
									CO10	
-	Total	50	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam – 1	30	CO1, CO2, CO3, CO4	L3, 13, 13, 14
CIA Exam – 2	30	CO5, CO6, CO7, C08	L3, L4, L3, L4
CIA Exam – 3	30	CO9, CO10	L3, L4
Assignment - 1	10	CO1, CO2, CO3, CO4	L2, L3, L4, L3
Assignment - 2	10	CO5, CO6, CO7, CO8	L1, L2, L3, L1
Assignment - 3	10	CO9, CO10	L3, L4
Seminar - 1	-	CO1, CO2, CO3, CO4	L2, L3, L4, L3
Seminar - 2	-	CO5, CO6,CO7,CO8	L1, L2, L3, L1
Seminar - 3	-	CO9, CO10	L3, L4
Other Activities - define -		CO1 to Co9	L2, L3, L4
Slip test			
Final CIA Marks		-	-

Note : Blooms Level in last column shall match with A.2 above. Dynamic force Analysis

D1. TEACHING PLAN - 1

Module - 1

Title:	Static force Analysis and Dynamic force Analysis	Appr Time:	16 Hrs
а	Course Outcomes	-	Blooms
	The student should be able to	-	Level
1	Determine the forces and couples for static and dynamic conditions of four bar and slider crank mechanisms to keep the system in equilibrium	CO1	L3
b	Course Schedule	_	_
	Module Content Covered	СО	Level
1	Static equilibrium. Equilibrium of two and three force members. Members with two	C01	L3
•	forces and torque,	001	20
2	Free body diagrams, Static force analysis of four bar mechanism	C01	L3
3	numerical problems	C01	L3
4	Slider-crank mechanism with and without friction.	C01	L3
5	numerical problems	C01	L3
6	Dynamic force Analysis: D'Alembert's principle, Inertia force, Inertia torque.	C01	L3
7	numerical problems	C01	L3
8	Dynamic force analysis of four-bar mechanism of numerical problems	C01	L3
9	Slider crank mechanism without friction.	C01	L3
10	numerical problems	C01	L3
с	Application Areas	CO	Level
1	Four-bar linkages can be used for many mechanical purposes including to convert	CO1	L3
	rotational motion to reciprocating motion.		
2	Four-bar linkages can be used for many mechanical purposes including to: convert	CO1	L3
	rotational motion to reciprocating motion.		
d	Review Questions	-	_
1	Explain the equilibrium with respect to two force of three force member.	CO1	L3
2	the crank and connecting rod of a vertical single cylinder gas engine running at 1800 rpm are 60mm and 240mm respectively. The diameter of the Piston is 80mm and the mass of the reciprocating is 1.2kg. At a point during the power stroke when the Piston has moved 20mmfrom the top dead centre position, the pressure on the Piston is 800 kN/m2. Determine :i) Net force on the piston ii) Thrust in the connecting rod iii) Thrust on the sides of cylinder wall iv) Engine speed at which the above values are zero.	CO1	L3
3	Drawing free body diagrams and applying equilibrium conditions.	CO2	L3
4	Explain principle of virtual work with an example.	CO2	L3
5	State the condition for static equilibrium of a body subjected to a system of, (i) two forces(ii) three forces (iii) member with two forces and a torque.	CO2	L3
6	With usual notations, explain the principle of virtual work, considering a slider crank mechanism.	CO2	L3

Module – 2

Title:	Balancing of Rotating Masses	Appr Time:	10 Hrs
a	Course Outcomes		Blooms
	The student should be able to	-	Level
1	Determine magnitude and angular position of balancing mass under static and dynamic condition of rotating masses in same and different planes	CO3	L3
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level

1	Balancing of Rotating Masses .	CO2	L3
2	Static and dynamic balancing, balancing of single rotating mass by balancing masses in same plane and in different planes.	CO2	L3
3	Balancing of several rotating masses by balancing masses in same plane and in different planes.	CO2	L3
4	Balancing of Reciprocating Masses:	CO2	L3
5	Inertia effect of crank and connecting rod, Single cylinder engine	CO3	L3
6	numerical problems	CO3	L3
7	balancing in multi cylinder-incline engine	CO3	L3
8	primary and secondary forces	CO3	L3
9	numerical problems	CO3	L3
10	numerical problems	CO3	L3
c	Application Areas	СО	Lev
1	Balancing of machineries related to simple mechanical systems	CO3	L3
d	Review Questions	-	-
1	Prove that the resultant unbalanced force is minimum when half of the reciprocating masses are balanced by rotating masses i.e., when $c = 1/2$	CO2	L3
2	Explain about Balancing of Reciprocating Masses.	CO2	L3
3	Explain the procedure for balancing several masses rotating in the same plane by analytical method.	CO2	L3
4	Define primary unbalanced force and secondary unbalanced force for a reciprocating engine mechanism.	CO3	L3
5	Explain why only partial balancing is possible in reciprocating masses.	CO3	L3
6	the weights WI, W2, W3 and W4 are 1962 N, 2943N, 2354N and 2550.6N respectively, in a plane perpendicular to shaft axis. The corresponding eccentricities are 20cm, 15cm, 25cm and 30cm respectively and the angles between the successive	CO3	L3

E1. CIA EXAM – 1

a. Model Question Paper - 1

			-							
Crs C	ode:	17ME52	Sem:	V	Marks:	30	Time:	75 minutes		
Cours	se:	Dynamic	s of Mach	inery						
-	-	Note: Answ	ver any 2 qu	estions, ea	ch carry equal 1	narks.		Marks	CO	Level
1	а		condition for for condition for condition for condition for the condition of the condition for condi		uilibrium of a bo	ody subje	cted to a system of	, (i) 07	CO1	L1
	b	Explain the	equilibrium	with respec	ct to two force an	d torque		08	CO1	L2
2	а	Drawing fre	ee body diag	rams and ex	xplain the forces	on slider	crank mechanism	08	CO1	L2
	b	Drawing fre	ee body diag	rams and ex	xplain the forces	on four b	ar chain	07	CO1	L2
3	а	State and explain D'Alembert's principle							CO1	L1
	b	With usual crank mech		explain the	principle of vi	rtual wor	k, considering a sl	ider 10	CO1	L2
4	a	respectively from A at 3 anti clockw to be placed Between X	v revolving a 300mm, 400 ise are A to d in planes X and Y is 4	at radii 80n mm, and 7 B 45 ⁰ , B to X and Y. Th 00mm and	nm, 70mm, 60m 00mm. The angl $C70^0$ and C to I the distance betwe Between Y and	m and 80 es betwee D 120 ⁰ . Th en the pla d D is 20	OOkg, 400kg and 20 omm in planes measen the cranks measen the balancing masses ones A and X is 100 00mm, if the balancen and angular positions	sure ured are mm cing	CO3	L3
	b	Why baland		red. Explai		-	asses by a single n		CO3	L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				Mode	l Assignmen	t Questions				
Crs Co	ode:	17ME52	Sem:	V	Marks:	5 / 10	Time:	90 – 120 n	ninutes	
Course	Course: Dynamics of Machinery									
Note:	Each s	tudent to a	inswer 2-3 assig	nments. Eacl	h assignmen	t carries equ	al mark.			
SNo	SNo USN Assignment Description							Marks	CO	Level
1			Prove that the	esultant unba	alanced forc	e is minimu	m when half of th	ne 5	CO3	L2
			reciprocating m	asses are bal	anced by rot	ating masse	s i.e., when $c = 1/2$	2		
2	2 Explain about Balancing of Reciprocating Masses.						5	CO4	L3	
3			Explain the pro	cedure for ba	lancing seve	eral masses i	rotating in the san	ne	CO3	L3
			plane by analyt	ical method.						
4			Define primary	unbalanced :	force and se	condary unb	balanced force for	a 5	CO3	L3
			reciprocating er	0						
5			Explain why or	ly partial bal	ancing is po	ssible in rec	iprocating masses	. 5	CO3	L3
6							2943N, 2354N ar		CO3	L3
							to shaft axis. Th			
							25cm and 30c			
							masses are 45°, 75	5°		
			and 135°. Are t	hese weights	statically ba	lanced?				

D2. TEACHING PLAN - 2

Module – 3

Title:	Governors and Gyroscope	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Determine sensitiveness, synchronism, effort and power of porter and hartnell governors.	CO4	L3
2	Determine gyroscopic couple and effects related to 2, 4 wheeler, plane disc, ship and aeroplanes.	CO5	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Types of governors, force analysis of Porter governors.	CO4	L3
2	Force analysis of Hartnell governors.	CO4	L3
3	Stability, Sensitiveness, Isochronism, Effort and Power.	CO4	L3
4	Numerical problems.15	CO4	L3
5	Numerical problems.	CO4	L3
6	Gyroscope: Vectorial representation of Gyroscopic couple.	CO5	L3
7	Effect of gyroscopic couple on plane disc, aeroplane,	CO5	L3
8	Effect of gyroscopic couple on ship, stability of two wheelers and four wheelers.	CO5	L3
9	Numerical problems.	CO5	L3
10	Numerical problems.	CO5	L3
с	Application Areas	СО	Level
1	Governors are used in the field of automobile engineering.	CO4	L3
2	Gyroscopes are used in the field of automobile engineering, aeronautics and ships.	CO5	L3
d	Review Questions	-	-
1	Explain in brief 'the effect of friction at sleeve on the performance of Porter Governor'.	CO4	L2
2	spring loaded governor of the Hartnell type has arms of equal lengths. The weights rotate in a circle of 13cm diameter when the sleeve is in the mid-position and the weight arms are vertical. The equilibrium speed for this position is 450rpm, neglecting friction. The maximum sleeve movement is to be 2.5cm and the maximum variation of speed, taking	CO4	L3

right ©201	7. cAAS. All rights reserved.	1	
	friction into account is to be \pm 5% of mid-position equilibrium speed. The weight of		
	sleeve is 39N and the friction may be considered equivalent to 29N at the sleeve.		
	The power of the governor must be sufficient to overcome the friction by a 1%		
	change of speed either way at		
	mid position. Determine, neglecting obliquity effect,		
	i) Weight of each rotating mass		
	ii) Spring stiffness i		
3	explain in brief:	CO4	L2
	i) Angular momentum		
	ii) Spin motion		
	(iii) Processional motion.		
4	Define height of the governor and derive an expression for the height of the	CO4	L2
	Hartwell governor.		
5	The arms of a porter governor are 300 mm long. The upper arms are pivoted on the	CO5	L3
	axis of rotation. The lower arms are attached to a sleeve at a distance of 400 mm		
	from the axis of rotation the mass of the load on the sleeve in 70 kg and the mass of		
	each ball is 10 kg. Determine the equilibrium speed when the radius of rotation of		
	the balls is 200 mm. If the friction is equivalent to a load of 20 N at the sleeve. What		
	will be the range of speed for this position?		
6	Explain the effect of Gyroscopic couple on Naval ship when it is steering and	CO5	L2
	pitching.		
7	Define the following with respect to the working of governors :	CO5	L2
	(iv) Stability of a governor.		
	(iii) Effort of a governor		
	(ii) Isochronism		
	(i) Sensitiveness		
8	derive an expression for the gyroscopic couple.	CO5	L3
9	derive the expression for speed of a porter Governor with usual notations, taking	CO5	L3
-	friction into account.		-
10	In a spring loaded Hartnell type governor, the extreme radii of rotation of the balls	CO5	L3
	are 80mm and 120mm. The ball and sleeve arms of the bell crank lever are equal in		
	length. The mass of each ball is 2kg. If the speeds at the two extreme positions are		
	400 and 420rpm.		
	Find: i) The sleeve lift; ii) Stiffness of the spring; iii) Initial compression of the		
	spring.		
11	With neat sketches, explain the effect of gyroscopic couple on steering of aeroplane,	CO5	L2
11	when it takes a right turn. The engine runs in clockwise when viewed from rear.	005	12
	when it takes a right turn. The engine runs in clockwise when viewed from real.		

Module – 4

Title:		Appr	16 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand types of vibration, SHM and methods of finding natural frequencies of simple mechanical systems.	CO6	L2
2	Determine equation of motion, natural frequency, damping factor, logarithmic decrement of damped free vibration (SDOF) systems.	CO7	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Introduction & Undamped free Vibrations (Single Degree of Freedom)	CO6	L2
2	Types of vibrations, Definitions, Simple Harmonic Motion (SHM),	CO6	L2
3	Work done by harmonic force, Principle of super position applied to SHM.	CO6	L2
4	Dynamic force Analysis Methods of analysis –(Newton's, Energy methods).&Rayleigh's &Rayleigh's	CO6	L2
5	Derivations for spring mass systems,	CO6	L2
6	Natural frequencies of simple systems,	CO7	L2
7	Springs in series and parallel, Torsional and transverse vibrations,	CO7	L2
8	Effect of mass of spring and problems.	CO7	L2
9	Numerical problems	CO7	L3

Copyright ©2017. cAAS. All rights reserved. 10 Numerical problems CO7 L3 **Application Areas** CO Level с Suspension systems in automobiles C06 L3 1 CO7 2 Hydraulic systems aircrafts L3 d **Review Questions** CO6 L3 1 Determine the natural frequency of a spring-mass system in which the mass of the spring is not negligible. 2 A spring-mass-damper system is subjected to harmonic excitation of Fsin (IA, CO6 L3 having maximum value of 250 N with a frequency of 5 Hz. If the mass is 10 kg, spring with spring constant 2 kN/m and a dashpot of damping constant 50 N-s/m, determine the complete solution for the motion of the mass. 3 Define: i) Deterministic and random vibration, ii) Linear and non-linear vibration. CO6 L2 4 determine the natural frequency of spring-mass system taking the mass of the spring L3 CO7 in to account. 5 CO7 L2 Define the following terms : (i) Periodic motion (ii) Degree of freedom (iii) Resonance (iv) Phase difference. 6 Add the following harmonic motion and check the solution graphically : CO7 L3 $x1 = 2\cos(wt + 0.5)$ $x^2 = 5\sin(wt + 1.0).$ 7 Determine the natural frequency of undamped free vibration system using energy CO7 L3 method.

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C			Sem:	V	Marks:	30	Time:	75	minutes		
Cours	se:		of Machiner								
-	-	Note: Ansv	ver any 2 qu	uestions, ead	ch carry equal	marks.			Marks	СО	Level
1	а	Explain abo	out Balancin	g of Recipro	ocating Masses.				05	CO5	L3
	b	respectively are 15cm, 2	y, in a plane 20cm, 25cm	perpendicul and 35cm re	W4 are 1960 ar to shaft axis. espectively and these weights state	The corresp he angles be	onding eccent etween the suc	tricities	10	CO5	L3
2	a	Define ser governors.	sitiveness	, synchronis	sm, effort and	power of	porter and l	hartnell	05	CO6	L2
	b	spring load rotate in a weight arn neglecting : variation of friction into sleeve is 40 The power change of s mid positio	circle of 15 ns are verti friction. The speed, takin account is 0N and the of the gov peed either	cm diameter ical. The ed maximum s ng to be $\pm 5\%$ of friction may ernor must way at e, neglecting	nell type has arr when the sleer quilibrium spee sleeve movemen of mid-position be considered be sufficient to g obliquity effect	ve is in the d for this nt is to be 3c equilibrium equivalent to overcome to	mid-position a position is 4 cm and the ma speed. The we to 20N at the	and the 00rpm, ximum eight of sleeve.		CO6	L3
3	a	The corresp and the ang	ponding rad gles betweer	ii of rotation successive	re 200kg, 300kg n are 0.2m, 0.15 masses are 450 required if the r	m, 0.25m a ,750 and 13	nd 0.3m respe 50. Find the p	ectively	10	CO3	L3
	b	Why balan		ired. Explain	n balancing of i			e mass	5	CO3	L3
4	a	respectively from A at 3	y revolving 300mm, 400	at radii 80m 0mm, and 70	D of magnitude am, 70mm, 60m 00mm. The ang $C70^{0}$ and C to 1	im and 80m les between	m in planes n the cranks me	neasure easured		CO3	L3

to be placed in planes X and Y. The distance between the planes A and X is 100mm
Between X and Y is 400mm and Between Y and D is 200mm, if the balancing
masses revolve at a radius of 100mm. Find their magnitude and angular positions

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

		8-	Imment to be assigned to each student. Model Assignment Questions			
Crs Co	ode:	17ME52	•	0 - 120 m	ninutes	
Course	e:	Dynamic	cs of Machinery			
Note:	Each	student to	answer 2-3 assignments. Each assignment carries equal mark.			
SNo		USN	Assignment Description	Marks	CO	Level
1			Explain the equilibrium with respect to two force of three force	e 8	CO1	L3
			member.			
2			the crank and connecting rod of a vertical single cylinder gas engine	e 7	CO1	L3
			running at 1800 rpm are 60mm and 240mm respectively. The diamete	r		
			of the Piston is 80mm and the mass of the reciprocating is 1.2kg. At			
			point during the power stroke when the Piston has moved 20mmfrom			
			the top dead centre position, the pressure on the Piston is 800 kN/m2			
			Determine :i) Net force on the piston ii) Thrust in the connecting rod			
			iii) Thrust on the sides of cylinder wall iv) Engine speed at which the	e		
			above values are zero.	_		
3			Drawing free body diagrams and applying equilibrium conditions.	8	CO2	L3
4			Explain principle of virtual work with an example.	7	CO2	L3
5			State the condition for static equilibrium of a body subjected to		CO2	L3
			system of, (i) two forces(ii) three forces (iii) member with two force	S		
			and a torque.	0	000	10
6			With usual notations, explain the principle of virtual work, considering	g 8	CO2	L3
7			a slider crank mechanism.	0	002	1.2
7			Prove that the resultant unbalanced force is minimum when half of the resimple the resultant unbalanced by restating message is a when $a = 1/2$		CO2	L3
0			reciprocating masses are balanced by rotating masses i.e., when $c = 1/2$	7	CO2	1.2
8 9			Explain about Balancing of Reciprocating Masses. Explain the procedure for balancing several masses rotating in the same		CO2 CO2	L3 L3
9			plane by analytical method.	8 0	02	LS
10			Define primary unbalanced force and secondary unbalanced force for a	a 7	CO3	L3
10			reciprocating engine mechanism.	a /	COS	L3
11			Explain why only partial balancing is possible in reciprocating masses.	8	CO3	L3
12			the weights WI, W2, W3 and W4 are 1962 N, 2943N, 2354N and		CO3	L3
12			2550.6N respectively, in a plane perpendicular to shaft axis. The		COS	LJ
			corresponding eccentricities are 20cm, 15cm, 25cm and 30cm			
			respectively and the angles between the successive masses are 45°, 75			
			and 135°. Are these weights statically balanced?			
13			Explain in brief 'the effect of friction at sleeve on the performance o	f 8	CO4	L3
			Porter Governor'.			
14			spring loaded governor of the Hartnell type has arms of equal lengths	. 8	CO4	L3
			The weights rotate in a circle of 13cm diameter when the sleeve is in			
			the mid-position and the weight arms are vertical. The equilibrium			
			speed for this position is 450rpm, neglecting friction. The maximum	n		
			sleeve movement is to be 2.5cm and the maximum variation of speed	,		
			taking			
			friction into account is to be \pm 5% of mid-position equilibrium speed			
			The weight of sleeve is 39N and the friction may be considered			
			equivalent to 29N at the sleeve. The power of the governor must be			
			sufficient to overcome the friction by a 1% change of speed either way	у		
			at			
			mid position. Determine, neglecting obliquity effect,			
			i) Weight of each rotating massii) Spring stiffness i			
15			explain in brief:	7	CO4	L3
1.3			i) Angular momentum	/	CU4	LJ
			ii) Spin motion			
			ii) Spin motion (iii) Processional motion.			

Copyright ©2017. cAA	S. All rights reserved.			
	the Hartwell governor.			
17	The arms of a porter governor are 300 mm long. The upper arms are	7	CO5	L3
	pivoted on the axis of rotation. The lower arms are attached to a sleeve			
	at a distance of 400 mm from the axis of rotation the mass of the load			
	on the sleeve in 70 kg and the mass of each ball is 10 kg. Determine the			
	equilibrium speed when the radius of rotation of the balls is 200 mm. If			
	the friction is equivalent to a load of 20 N at the sleeve. What will be			
	the range of speed for this position?			
18	Explain the effect of Gyroscopic couple on Naval ship when it is	7	CO5	L3
	steering and pitching.			
19	Define the following with respect to the working of governors :	8	CO5	L3
	(iv) Stability of a governor.			
	(iii) Effort of a governor			
	(ii) Isochronism			
	(i) Sensitiveness			
20	Derive an expression for the gyroscopic couple.	7	CO5	L3
21	Derive the expression for speed of a porter Governor with usual	8	CO5	L3
	notations, taking friction into account.			
22	In a spring loaded Hartnell type governor, the extreme radii of rotation	8	CO5	L3
	of the balls are 80mm and 120mm. The ball and sleeve arms of the bell			
	crank lever are equal in length. The mass of each ball is 2kg. If the			
	speeds at the two extreme positions are 400 and 420rpm.			
	Find: i) The sleeve lift; ii) Stiffness of the spring; iii) Initial			
	compression of the spring.			

D3. TEACHING PLAN - 3

Module – 5

Title:		Appr Time:	16 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Determine the natural frequency, force and motion transmissible of single degree freedom systems.	CO8	L2
2	Determine equation of motion of rotating and reciprocating unbalance systems, magnification factor, and transmissibility of forced vibration (SDOF)Systems.	CO9	L3
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Damped free Vibrations (Single Degree of Freedom)	CO8	L2
2	Types of damping, Analysis with viscous damping -	CO8	L2
3	Derivations for over, critical and under damped systems.	CO8	L3
4	Forced Vibrations (Single Degree of Freedom):	CO8	L2
5	Analysis of forced vibration with constant harmonic excitation, Magnification factor (M.F.),		L2
6	Vibration isolation - Transmissibility ratio,	CO9	L2
7	Excitation of support Static force Analysis: (absolute and relative)	CO9	L3
8	Logarithmic decrement and numerical problems.	CO9	L3
9	numerical problems	CO9	L3
10	numerical problems	CO9	L3
с	Application Areas	СО	Level
1	Vibration can be desirable: for example, the motion of a tuning fork, the reed in a wood wind instrument, a mobile phone, or the cone of a loudspeaker	CO9	L3
d	Review Questions	-	-
1	A spring mass damper system has a mass of 10 kg, spring stiffness 250 N/m and damping coefficient of 15 N-S/m. Determine the natural frequency, critical damping coefficient, damping factor, damped natural frequency, period of vibration, logarithmic decrement, ratio of two successive amplitudes and number of cycles after which the original amplitude is below 15%.	CO10	L3
2	Define the term "Transmissibility", and derive the expression for transmissibility	CO10	L2

	ratio due to harmonic excitation.		
3	 A machine mass on ton is acted upon by an external force 2450N at a frequency of 1500rpm. To reduce the effects of vibration, isolator of rubber having a static deflection of 2mm under the machine load and an estimated damping factor of 0.2 are used. Determine: i) Force transmitted to the foundation ii) Amplitude of vibration of the machine iii) Phase lag of the transmitted force with respect to the external force 	CO9	L3
4	A machine of mass 500kg is supported on spring of stiffness 106N/m. if the machine has a rotating unbalance of 0.25 Kg-m, determine i) The force transmitted to the floor at 1200 rpm ii) The dynamic amplitude at this speed iii) The phase angle.	CO9	L3
5	 spring mass damper system is having a mass of 10kg and a spring of such stiffness which causes a static deflection of 5mm. The amplitude of vibration reduces to 1/4 the initial value in 10 oscillations, determine i) Logarithmic decrement ii) Actual damping present in the system iii) Damped natural frequency. 	CO9	L3
6	 A machine of mass one ton is acted upon by an external force 2450N at a frequency of 1500rpm. To reduce the effects of vibration, isolator of rubber having a static deflection of 2mm under the machine load and an estimated damping factor of 0.2 are used. Determine: i) Force transmitted to the foundation; ii) Amplitude of vibration of the machine; iii) Phase lag of the transmitted force with respect to the external force. 	CO9	L3
7	A vibratory body of mass 150kg supported on springs of total stiffness 1050 kN/m has a rotating unbalance force of 525 N at a speed of 6000rpm. If the damping factor is 0.3, determine: i)Amplitude of vibration and phase angle. ii) Transmissibility ratio and iii) Force transmitted to the foundation.	CO10	L3

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	ode:	17ME52	Sem:	5	Marks:	30	Time:	75 minutes		
Cours	se:	Dynamics of	of Machinery			÷	· · · ·			
-	-	Note: Ansv	ver any 2 qu	estions, eac	h carry equal	marks.		Marks	СО	Level
1	а	State the condition for the equilibrium of the following systems								L2
		,	e member ii)							
	b						rce applied to slide		1	L2
							mm,BC= 240	mm,		
		$\partial = 60^{\circ}$. Dete	ermine the fo	rces on vari	ous links & the	driving to	rque T _{2.}			
					OR					
2	а						e rotating at 1800		4	L2
							spaced at 150 mm a			
							ks appear at interva			
					1	0	s corresponding to	each		
							ndary forces if any			
			ed primary a	and seconda	ry couples with	reference	to central plane o	f the		
		engine.								
	b	Define loga	rithmic decr	ement and d	erive the equati	on for san	ne	10	9	L3
3	а	A body of	mass 10 kg	is suspende	ed from a helic	al spring	having a stiffness	of 2 5	9	L2
5	u						0.1 m/sec is conne		,	
				•		•	i) Ratio of succes			
		amplitude					-,			
		-	de of body af	ter 10 cycle	s if the initial a	nplitude is	s 15 mm.			
		· •		·	OR					

Copyrig	ht ©2017	. cAAS. All rights reserved.			
4	a	A machine of mass 2000 N is mounted on rubber pads which given as initial static	6	10	L2
		deflection of 2mm under the self weight of machine it is also provided with damping			
		such that damping ratio is 0.2 determine			
		a) Resonant frequency b)Max amplitude and corresponding frequency			
		c) The phase angel at $\omega = 100$ rad/s.			
	b	Define magnification factor, vibration isolation and transmissibility ratio	9	10	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

1010. A (iistinet assign	Iment to be assigned to each student. Model Assignment Questions			
Crs Code	: 17ME52		9 0 – 120 m	ninutes	
Course:	Dynamics	s of Machinery			
Note: Ea	ch student to	answer 2-3 assignments. Each assignment carries equal mark.			
SNo	USN	Assignment Description	Marks	СО	Level
1		Prove that the resultant unbalanced force is minimum when half of th	e 7	CO2	L3
		reciprocating masses are balanced by rotating masses i.e., when $c = 1/2$	2		
2		Explain about Balancing of Reciprocating Masses.	8	CO2	L3
3		Explain the procedure for balancing several masses rotating in the sam	e 7	CO2	L3
		plane by analytical method.			
4		Define primary unbalanced force and secondary unbalanced force for	a 8	CO3	L3
		reciprocating engine mechanism.			
5		Explain why only partial balancing is possible in reciprocating masses.		CO3	L3
6		the weights WI, W2, W3 and W4 are 1962 N, 2943N, 2354N an 2550.6N respectively, in a plane perpendicular to shaft axis. Th corresponding eccentricities are 20cm, 15cm, 25cm and 30cr respectively and the angles between the successive masses are 45°, 75 and 135°. Are these weights statically balanced?	e n	CO3	L3
7		Explain in brief 'the effect of friction at sleeve on the performance of Porter Governor'.	of 7	CO4	L2
8		spring loaded governor of the Hartnell type has arms of equal lengths. The weights rotate in a circle of 13cm diameter when the sleeve is i the mid-position and the weight arms are vertical. The equilibriur speed for this position is 450rpm, neglecting friction. The maximur sleeve movement is to be 2.5cm and the maximum variation of speed taking friction into account is to be \pm 5% of mid-position equilibrium speed The weight of sleeve is 39N and the friction may be considere equivalent to 29N at the sleeve. The power of the governor must b sufficient to overcome the friction by a 1% change of speed either wa at mid position. Determine, neglecting obliquity effect, i) Weight of each rotating mass ii) Spring stiffness I	n n l, d e	CO4	L3
9		explain in brief: i) Angular momentum ii) Spin motion (iii) Processional motion.	7	CO4	L2
10		Define height of the governor and derive an expression for the height of the Hartwell governor.	of 8	CO4	L2
11		The arms of a porter governor are 300 mm long. The upper arms ar pivoted on the axis of rotation. The lower arms are attached to a sleev at a distance of 400 mm from the axis of rotation the mass of the loa on the sleeve in 70 kg and the mass of each ball is 10 kg. Determine th equilibrium speed when the radius of rotation of the balls is 200 mm. It the friction is equivalent to a load of 20 N at the sleeve. What will b the range of speed for this position?	e d e lf	CO5	L3
12		Explain the effect of Gyroscopic couple on Naval ship when it is steering and pitching.	s 7	CO5	L2
13		Define the following with respect to the working of governors : (iv) Stability of a governor.	8	CO5	L2

	AS. All rights reserved. (iii) Effort of a governor			
	(ii) Isochronism			
	(i) Sensitiveness			
14	Derive an expression for the gyroscopic couple.	7	CO5	L3
15	Derive the expression for speed of a porter Governor with usual notations, taking friction into account.	7	CO5	L3
16	In a spring loaded Hartnell type governor, the extreme radii of rotation of the balls are 80mm and 120mm. The ball and sleeve arms of the bell crank lever are equal in length. The mass of each ball is 2kg. If the speeds at the two extreme positions are 400 and 420rpm. Find: i) The sleeve lift; ii) Stiffness of the spring; iii) Initial compression of the spring.	8	CO5	L3
17	With neat sketches, explain the effect of gyroscopic couple on steering of aeroplane, when it takes a right turn. The engine runs in clockwise when viewed from rear.	8	CO2	L3
18	With neat sketches, explain the effect of gyroscopic couple on steering of aeroplane, when it takes a right turn. The engine runs in clockwise when viewed from rear.	8	CO2	L3
19	Determine the natural frequency of a spring-mass system in which the mass of the spring is not negligible.	7	CO2	L3
20	A spring-mass-damper system is subjected to harmonic excitation of Fsin (IA, having maximum value of 250 N with a frequency of 5 Hz. If the mass is 10 kg, spring with spring constant 2 kN/m and a dashpot of damping constant 50 N-s/m, determine the complete solution for the motion of the mass.	8	CO3	L3
21	Define: i) Deterministic and random vibration, ii) Linear and non-linear vibration.	8	CO3	L3
22	determine the natural frequency of spring-mass system taking the mass of the spring in to account.	7	CO3	L3
23	Define the following terms : (i) Periodic motion (ii) Degree of freedom (iii) Resonance (iv) Phase difference.	8	CO4	L1
24	Add the following harmonic motion and check the solution graphically : x1 = 2cos (wt + 0.5) x2 = 5sin (wt + 1.0).	8	CO4	L3
25	Determine the natural frequency of undamped free vibration system using energy method.	7	CO4	L2

F. EXAM PREPARATION

1. University Model Question Paper

Course:		DYNAMICS OF	MACHINERY	7			Month /	Year	May /2	019
Crs C	Code:	17ME52	Sem:	v	Marks:	100	Time:		180 mi	nutes
-	Note	Answer all FIVE	full questions.	All questions c	arry equal mai	rks.		Marks	CO	Level
1	а	Discuss the eq	uilibrium of	the followin	g systems :			8 / 20	CO1	L1
		i) Two force n	nembers							
		ii) Three force								
		iii) Member with two forces and a torque.								
		iii) Meilidei w			le.					
	b	XX7:41				- £	1_	8/20	CO1	L1
	D	With usual		explain the	principle	of virtual	work,	8/20	COI	LI
		considering a	slider crank							
		mechanism.								
	с	A four link m	echanism w	ith the follo	wing dimens	sions is act	ed upon	8/20	CO2	L2
		by a force 80N								

Copyrigl	ht ©2017. c	AAS. All rights reserved. link AB for the static equilibrium of the mechanism for the given			
		configuration. $AB = 400 \text{ mm}$; $BC - 1000 \text{ mm}$, $CD = 750 \text{ m}$			
		DE = 350mm, AD = 500mm.			
	d	On the slider crank mechanism shown in fig 1 the value of force applied to slide 4 is 2KN. The dimentions of the various links are AB = 80 mm, BC = 240 mm, ∂ =60 ⁰ . Determine the forces on various links & the driving torque T ₂ .	16 / 20	CO2	L2
		OR			
-	а	Determine the condition for stability of a 4 wheel moving in a curved path taking left turn.	8 / 20	CO1	L1
	b	explain the equilibrium with respect to two force of three force member.	8/20	CO1	L1
	c	b. The crank and connecting rod of a vertical single cylinder gas engine running at 2800 rpmare 60mm and 240mm respectively. The diameter of the Piston is 80mm and the mass of the reciprocating is 1.4kg. At a point during the power stroke when the Piston has moved 20mm from the top dead centre position, the pressure on the Piston is 800 kN/m2. Determine : i) Net force on the piston ii) Thrust in the connecting rod iii) Thrust on the sides of cylinder wall iv) Engine speed at which the above values are zero On the slider crank mechanism shown in fig 1 the value of force applied to slide 4 is 2KN.The dimentions of the various links are AB = 90 mm,BC= 350 mm, ∂ =60 ⁰ .Determine the forces on various links & the driving torque T ₂ .			L2 L2
2	а	state 'ID' Alembert's principle.	6 / 20	C03	L1
			10 (20	GO 4	
	b	A slider crank mechanism has crank = 0.5m, connecting rod = 1.75m. When the crank is 60° away from IDC, a force of IkN acts on slider, along line of stroke, away from crank centre.Find the torque T, needs to be applied on crank for static equilibrium of m/sm by Virtual work method	10720	CO4	L2
	c	The crank and connecting rod of a vertical single cylinder gas engine running at 1800 rpm are 60mm and 240mm respectively. The diameter of the Piston is 80mm and the mass of the reciprocating is 1.2kg. At a point during the power stroke when the Piston has moved 20mm from the top dead centre position, the pressure on the Piston is 800 kN/m2. Determine : i) Net force on the piston ii) Thrust in the connecting rod iii) Thrust on the sides of cylinder wall iv) Engine speed at which the above values are zero	16 / 20	CO3	L2
	d	Explain in brief either "D'Alembert's principle" or "dynamically	8/20	CO4	L1
		Equivalent system			
3	a	A racing car weighs 21582 N, it has a wheel base of 2.4m and a track of width 1.4m. The centre of mass of the car lies at 0.6m above the ground and 1.4 m from the rear axle. Equivalent mass of engine parts is 140kg with a radius of gyration of 0.15m. The back axle ratio is 5.	16 / 20	CO5	L2
		The engine shaft and flywheel rotate clock wise when viewed from front Each wheel has a diameter of 0.8m and moment of inertia of			
	E52	front. Each wheel has a diameter of 0.8m and moment of inertia of			

opyright	©2017. c	AAS. All rights reserved. 0.7 kg- m ² . Determine the load distribution on the wheels when the car			
		is taking a turn around a curve of 100m radius at a speed of 72km/hr to the left.			
	b	Determine the condition for stability of a 4 wheel moving in a curved path taking left turn.	8 / 20	CO6	L1
	с	An automobile is traveling along a curved track of 120m radius at 72	16 / 20	CO5	L2
		km/hr to the left,. Each of the 4 wheels has a movement of inertia 2kg-			
		m ² and an effective diameter of 0.6m. Rotating parts of an engine			
		having a movement of inertia of 1.5 kg-m ² and rotates in clockwise			
		direction as seen from front. Gear ratio of the engine to the wheel is 4,			
		Mass of the vehicle is 2tons and the centre of mass is 0.5m above the			
		road level. The width of track is 1.6m. Determine the load distribution			
		on the wheels and mark them on a sketch. How the values differ if the			
		automobile turns right instead of left.			
	d	The crank and connecting rod of a vertical single cylinder gas engine	16 / 20	CO6	L2
		running at 1800 rpm are 60mm and 240mm respectively. The diameter			
		of the Piston is 80mm and the mass of the reciprocating is 1.2kg. At a			
		point during the power stroke when the Piston has moved 20mm from			
		the top dead centre position, the pressure on the Piston is 800 kN/m2.			
		Determine :			
		i) Net force on the piston			
		ii) Thrust in the connecting rod			
		iii) Thrust on the sides of cylinder wall			
		iv) Engine speed at which the above values are zero.			
	а	or The weights WI, W2, W3 and W4 are 1962 N, 2943N, 2354N and	16 / 20	CO5	L2
	a	-	10720	005	L2
		2550.6N respectively, in a plane perpendicular to shaft axis. The corresponding eccentricities are 20cm, 15cm, 25cm and 30cm			
		respectively and the angles between the successive masses are 45°,			
		75° and 135°. Are these weights statically balanced?			
	b	A shaft is supported in bearings 180cm apart and project 45cm beyond	16 / 20	CO6	L2
		bearing at each end. The shaft carries three pulleys one at each end and			
		one at the middle of its is length. The end pulleys weigh 471 N and			
		196.2N and their eccentricities are 1.5cm and 1.25cm respectively.			
		The central pulley weighs 549.4N and its centre of gravity is 1.5cm			
		from shaft axis. If the pulleys are arranged to give static balance,			
		determine :			
		i) Relative angular positions of the pulleys and			
	-	ii) Dynamic forces at bearings when the shaft rotates at 300 rpm	16/00	COF	1.0
	с	piston of a 4 cylinder vertical in line engine reach their upper most		CO5	L2
		position at 90° interval in order of their axial position, pitch of the			
		cylinder = $0.3m$; length of the connecting rod = $0.42m$. the engine			
		runs at 600 rpm. If the reciprocating parts of each engine has a mass			
		of 2.5kg. Find the unbalanced primary and secondary forces and			
	d	couples. Take central plane of engine as reference plane. A porter governor has equal arms each 250mm long and pivoted on	16/20	CO6	L2
	u	the axis of rotation. Each ball has a mass of 5kg and the mass of the	10/20	200	12
		central load on the sleeve is 25kg. The radius of rotation of the ball is			
		150mm when the governor begins to lift and 200mm when the			
		governor is at maximum speed. Find the minimum and maximum			
		governor is at maximum spece, ring the minimum and maximum			
		speeds and range of speed of the governor			

Copyright 4	©2017. (a	AAS. All rights reserved. Split up the harmonic motion X 6 Cos (wt f 45°) into two harmonic	12/20	CO7	L2
•		motions. One of them having phase angle of zero degree and other		007	
		having phase angle of 60° Check solution the graphically.			
	b	Obtain the equivalent stiffness of spring when springs are connected	8 / 20		L1
	0	in series and parallel.	0720		DI
	с	Briefly explain, Free, Forced, damped and undamped vibration.	8 / 20	C08	L1
	d	Derive the expression for work done by harmonic force.	8 / 20	000	L1
	u	OR	0/20		LI
_	а	-	12/20	CO7	L2
_	a	Add the following harmonic motions analytically and check the solution graphically $x_1 = 4 \cos(wt + 10)$, $x_2 = 6 \cos(wt + 60)$	12/20	007	L2
	b	solution graphically x1=4 cos(wt+10) x2=6cos(wt+60)	8 / 20	CO8	L1
	U	Determine the natural frquency using newtons method and energy method.	0/20	000	LI
	0		8 / 20		L1
	с	Obtain the equivalent stiffness of spring when springs are connected	8/20		LI
	Ŀ	in series and parallel	0 / 20		τ 1
	d	Determine the natural frquency using spring mass system in horizantal	8 / 20		L1
		position.			
~			0./00	C O O	T 1
5	a 1	Define logarithmic decrement and derive the equation for same	8/20	CO9	L1
	b	A body of mass 10 kg is suspended from a helical spring having a		CO10	L2
		stiffness of 2 N/mm.A damper having a resistance of 5 N at a velocity			
		of 0.1 m/sec is connected between the mass and fixed end of the			
		spring determine i) Ratio of successive amplitude			
		ii) Amplitude of body after 10 cycles if the initial amplitude is 15 mm.			
	c	Define magnification factor, vibration isolation and transmissibility	8 / 20	CO9	L1
		ratio.			
	d	A machine of mass 4000 N is mounted on rubber pads which given as		CO10	L2
		initial static deflection of 3mm under the self weight of machine it is			
		also provided with damping such that damping ratio is 0.2 determine			
		a) Resonant frequency b)Max amplitude and corresponding frequency			
		c) The phase angel at $\omega = 100 \text{ rad/s}$.			
		OR			
	а	vibratory body of mass 150kg supported on springs of total stiffness	16 / 20	CO9	L2
		1050kN/m has a			
		rotating unbalance force fo 525N at a speed of 6000rpm. If the			
		damping factor is 0.3.			
		Determine :			
		i) The amplitude caused by the unbalance and its phase angle			
		ii) The transmissibility			
	1	iii) The actual force transmitted and its phase angle.	0.400	900	T 1
	b	Define magnification factor, vibration isolation and transmissibility	8/20	CO9	L1
		ratio.		2 010	
	с	A machine of mass 2000 N is mounted on rubber pads which given as		C010	L2
		initial static deflection of 2mm under the self weight of machine it is			
		also provided with damping such that damping ratio is 0.2 determine			
		a) Resonant frequency b)Max amplitude and corresponding frequency			
		c) The phase angel at $\omega = 100 \text{ rad/s.}$		G (1 -	
	d	A body of mass 20 kg is suspended from a helical spring having a		C010	L3
		stiffness of4 N/mm.A damper having a resistance of 5 N at a velocity			
		of 0.1 m/sec is connected between the mass and fixed end of the			
		spring determine i) Ratio of successive amplitude			
		ii) Amplitude of body after 10 cycles if the initial amplitude is 15 mm.			

2. SEE Important Questions

Course: Crs Code:			th / Year	May /2	
_rs C		17ME52Sem:5Marks:100TimeAnswer all FIVE full questions. All questions carry equal marks.	:	180 mi	nutes
Mod		Important Question	Marks	CO	Year
ule	Quo.	niportant Question	IVIAI No		Ital
1	1	Explain the equilibrium with respect to two force of three force member.	8/16	co1	2017
	2	A four link mechanism with the following dimensions is acted upon by a force δ		co1	2017
		150° on the link DC. Determine the input torque on the link AB for the st			
		equilibrium of the mechanism for the given configuration. $AB = 400$ mm; BC			
	2	1000mm, CD = 750mm and ',DE = 350mm, AD = 500mm.	8/16	222	2016
	3 4	State 'ID' Alembert's principle. The crank and connecting rod of a vertical single cylinder gas eng		co2 co2	2013
	•			002	201.
		running at 1800 rpm are 60mm and 240mm respectively. The diame			
		of the Piston is 80mm and the mass of the reciprocating is 1.2kg. A			
		point during the power stroke when the Piston has moved 20mm fr			
		the top dead centre position, the pressure on the Piston is 800 kN/r			
		Determine : i) Net force on the piston ii) Thrust in the connecting ro			
		iii) Thrust on the sides of cylinder wall iv) Engine speed at which the above val are zero.	ues		
2	1	A slider crank mechanism has crank $= 0.5m$, connecting rod $= 1.75$	m. 10/20	co3	2016
		When the crank is 60° away from IDC, a force of IkN acts on slice			
		along line of stroke, away from crank centre. Find the torque T, new	-		
		to be applied on crank for static equilibrium of m/sm by	<i>A</i> ⁵		
		Virtual work method			
	2	The crank and connecting rod of a vertical single cylinder gas eng	ina 12/16	co3	201
	2			005	201
		running at 1800 rpm are 60mm and 240mm respectively. The diame			
		of the Piston is 80mm and the mass of the reciprocating is 1.2kg. A			
		point during the power stroke when the Piston has moved 20mm from the ten dead control position, the processing on the Distory is 200 kN/			
		the top dead centre position, the pressure on the Piston is 800 kN/r	12.		
		Determine :			
		i) Net force on the piston			
		ii) Thrust in the connecting rod			
		iii) Thrust on the sides of cylinder wall			
	2	iv) Engine speed at which the above values are zero	1 1 1 1 1	4	2017
	3	b. The crank and connecting rod of a vertical single cylinder gas engine running 1800 rpm are 60mm and 240mm respectively. The diameter of the Piston is 800	-	co4	2017
		and the mass of the reciprocating is 1.2kg. At a point during the power stroke wi			
		the Piston has moved 20mm from the top dead center position, the pressure on			
		Piston is 800 kN/m2. Determine :			
		i) Net force on the piston			
		ii) Thrust in the connecting rod			
		iii) Thrust on the sides of cylinder wall iv) Engine speed at which the above values are zero			
	4	iv) Engine speed at which the above values are zero On the slider crank mechanism shown in fig 1 the value of for	rce 16/16	co4	2018
	•	applied to slide 4 is 2KN. The dimentions of the various links are A			2010
		= 80 mm,BC= 240 mm, ∂ =60 ⁰ .Determine the forces on various lin			
			IKS		
		& the driving torque T_{2} .			
3	1	For masses m $l = 100$ kg, m $2 = 175$ kg, m $3 = 200$ k and m $4 = 125$ kgs are fixed to	the 16 / 20	co5	2017
5	1	crank of 200mm radius and revolve in planes I st, IInd, III' respectively. The angu			201
		position of the planes I I nd. III' and and IVth with respect to Is' plane are 75°, 1			

opyright	©2017. c	AAS. All rights reserved.			
		and 240° take in the same sense. Distance of plane II n' IIIrd and IV" from Ist are 600mm, 1800mm and 2400mm. Determine the magnitude and position of the balancing masses at the radius 600mm in planes L and M located in the middle of I s' and IInd and in the middle of III rd and IV' respectively			
	2	The crank and connecting rod of a vertical single cylinder gas engine		соб	2012
		running at 1800 rpm are 60mm and 240mm respectively. The diameter			
		of the Piston is 80mm and the mass of the reciprocating is 1.2kg. At a			
		point during the power stroke when the Piston has moved 20mm from			
		the top dead centre position, the pressure on the Piston is 800 kN/m2 .			
		Determine :			
		i) Net force on the piston			
		ii) Thrust in the connecting rod			
		iii) Thrust on the sides of cylinder wall			
		iv) Engine speed at which the above values are zero.	10/1 4		0011
	3	piston of a 4 cylinder vertical in line engine reach their upper most position at 90° interval in order of their axial position, pitch of the cylinder = $0.35m$; length of		co5	2014
		the connecting rod = 0.42 m. the engine runs at 600 rpm. If the reciprocating parts of			
		each engine			
		has a mass of 2.5kg. Find the unbalanced primary and secondary forces and couples.			
	4	Take central plane of engine as reference plane	10/10		2015
	4	A porter governor has equal arms each 250mm long and pivoted on		соб	2015
		the axis of rotation. Each ball has a mass of 5kg and the mass of the			
		central load on the sleeve is 25kg. The radius of rotation of the ball is			
		150mm when the governor begins to lift and 200mm when the			
		governor is at maximum speed. Find the minimum and maximum			
		speeds and range of speed of the governor			
4	1	Briefly explain, Free, Forced, damped and undamped vibration	8/16	co7	2017
	2	Split up the harmonic motion X 6 Cos (wt f 45°) into two harmonic	8 / 16	co8	2018
		motions. One of them having phase angle of zero degree and other			
		having phase angle of 60° Check solution by graphically.			
	3	Obtain the equivalent stiffness of spring when springs are connected in series and parallel.	8 / 16	co7	2017
	4	Obtain the natural frequency of the system	8 / 16	c08	2018
5	1	Define logarithmic decrement and derive the equation for same.	8/16	co9	2018
5	1	logarithmic decrements,	0/10	00)	2010
		iii) The actual force transmitted and its phase angle.		10	
	2	b. Vibration system consisting of a mass 3kg a springs of stiffness 100kN/m and damper. Damping coefficient 30Ns/m. Determine Damping factor, critical damping		co10	2018
		coefficient Ratio of two consecutive amplitudes. Number of Cycles after which the			
		initial amplitude is reduced to 20%?			
	3	Derive an expression for magnification factor or amplitude ratio for spring mass	8/16	co9	2017
		system with viscous damping subjected to harmonic force.			
	4	A vibratory body of mass 150kg supported on springs of total striffness 1050kN/m		co10	2017
		has a rotating unbalance force for 525N at a speed of 6000rpm. If the damping factor is 0.3.			
		Determine :			
		i) The amplitude caused by the unbalance and its phase angle			
		ii) The translatability			

Copyright ©2017. CAAS. All rights reserved. G. Content to Course Outcomes 1. TLPA Parameters

Table 1: TLPA –

|--|

			ample		<u>iise</u>		
Mo dul e- #	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)		Blooms' Learning Levels for Content	Bloo ms'	Identified Action Verbs for Learning	Instructio n Methods for Learning	Assessment Methods to Measure Learning
Α	В	С	D	E	F	G	Н
	Static force Analysis: Static equilibrium. Equilibrium of two and three force members. Members with two forces and torque, Free body diagrams, Static force analysis of four bar mechanism and Slider-crank mechanism with and without friction.	5	L2 L3	L3	Understan d Analysis	Lecture/T utorial	Assignment
	Dynamic force Analysis: D'Alembert's principle, Inertia force, Inertia torque. Dynamic force analysis of four-bar mechanism and Slider crank mechanism without friction, numerical problems	5	L2 L3	L3	Understan d Analysis	Lecture/T utorial	Assignment
	Balancing of Rotating Masses: Static and dynamic balancing, balancing of single rotating mass by balancing masses in same plane and in different planes. Balancing of several rotating masses by balancing masses in same plane and in different planes.	5	L2 L3	L3	Understan d Analysis	Lecture/T utorial	Assignment
	Balancing of Reciprocating Masses: Inertia effect of crank and connecting rod, Single cylinder engine, balancing in multi cylinder-inline engine (primary and secondary forces), numerical problems.	5	L2 L3	L3	Understan d Analysis	Lecture/T utorial	Assignment
	Governors: Types of governors, force analysis of Porter and Hartnell governors. Controlling force,Stability,Sensitiveness, Isochronism, Effort and Power.	5	L2 L3	L3	Understan d Analysis	Lecture/T utorial	Assignment
	Gyroscope: Vectorial representation of angular motion, Gyroscopic couple. Effect of gyroscopic couple on plane disc, aeroplane, ship, stability of two wheelers and four wheelers, numerical problems.	5	L2 L3	L3	Understan d Analysis	Lecture/T utorial	Assignment
	Introduction & Undamped free Vibrations (Single Degree of Freedom) Types of vibrations, Definitions, Simple Harmonic Motion (SHM), Work done by harmonic force, Principle of super position applied to SHM. Methods of analysis – (Newton's, Energy & Rayleigh's methods).		L2 L3	L3	Understan d Analysis	utorial	Assignment
4	Derivations for spring mass systems, Natural	5	L2	L3	Understan	Lecture/T	Assignment

Сору	right ©2017. cAAS. All rights reserved. frequencies of simple systems, Springs in series and parallel, Torsional and transverse vibrations, Effect of mass of spring and problems.		L3		d Analysis	utorial	
5	Damped free Vibrations (Single Degree of Freedom) Types of damping, Analysis with viscous damping - Derivations for over, critical and under damped systems, Logarithmic decrement and numerical problems.		L2 L3	L3	Understan d Analysis	Lecture/T utorial	Assignment
5	Forced Vibrations (Single Degree of Freedom):Analysis of forced vibration with constant harmonic excitation, Magnification factor (M.F.),Vibration isolation - Transmissibility ratio, Excitation of support (absolute and relative),Numerical problems.	-	- L1 - L2	L2	Understan d Analysis		Assignment

2. Concepts and Outcomes:

<u>Table 2: Concept to</u> Outcome – Example Course

	<u>Outcome – Example Course</u>				Course	
Mo	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome
dul	Outcome from	Concepts		(What all Learning	(1.Action Verb,	
e- #	study of the	from		Happened from the study	2.Knowledge,	
	Content or	Content		of Content / Syllabus. A	3.Condition /	Student Should be
	Syllabus			short word for learning	Methodology,	able to
				or outcome)	4.Benchmark)	
Α	Ι	J	K	L	М	N
1	To gain the	static and	Force and	Force	- Understand and	To gain the knowledge
	U	dynamic	Torque		analysis	of static and dynamic
		equilibrium				equilibrium conditions
	dynamic					of mechanisms
	equilibrium					
	conditions of					
	mechanisms					
	-					
1		static and	Force and	Force	Understand and	Analyse the mechanism
		dynamic	Torque		analysis	subjected to forces and
	-	equilibrium				couples with and
	static and					without friction
	dynamic					
	equilibrium conditions of					
	mechanisms					
		forces and	Dolonoina	Delensing of mass	Understand and	To understand the
	,		Balancing	Balancing of mass		
	subjected to	couples			analysis	balancing principles of rotating masses
	forces and					rotating masses
	couples with					
	and without					
	friction					
		forces and	Balancing	Balancing of mass	Understand and	To understand the
		couples	2 manoing		analysis	balancing principles of
	subjected to	····			····· , ····	reciprocating masses
	forces and					1
	couples with					
	and without					
	friction					
L		1	L	l.	l.	

Соруг	ight ©2017. cAAS. All righ	ts reserved.				
3		rotating masses	Speed, Direction	Speed	Understand and analysis	Abel to know to regulate the speed of the engine
3	To understand	rotating masses	Speed, Direction	Speed	Understand and analysis	To understand the stability of two wheeler and four wheelers
4	To understand the stability of two wheeler and four wheelers	Natural Frequency	Time period and Frequency	Natural Frequency	Understand and analysis	To understand the different types of vibration and simple harmonic motion
4	To understand the stability of two wheeler and four wheelers	Natural Frequency	Time period and Frequency	Natural Frequency	Understand and analysis	To understand the vibration characteristics of single degree of freedom systems
5	To understand the forced vibration with constant harmonic excitation and logarithmic decrement.	coefficient	Damping	Damping coefficient	Understand and analysis	To understand the characterise the single degree freedom system subjected to free and forced vibration with and with out damping
5	To understand the forced vibration with constant harmonic excitation and logarithmic decrement.	coefficient	Damping	Damping coefficient	Understand and analysis	To understand the forced vibration with constant harmonic excitation and logarithmic decrement.